LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microbial electrochemical system for the phenol degradation using alternating current: Metabolic pathway study.

Photo from wikipedia

The present study was conducted to investigate the effect of alternating current (AC) on phenol removal in a microbial electrochemical system (MES) and determine its by-products. The bioreactor used for… Click to show full abstract

The present study was conducted to investigate the effect of alternating current (AC) on phenol removal in a microbial electrochemical system (MES) and determine its by-products. The bioreactor used for this purpose operates in the batch mode supplied with an AC power supply. The factors stimulating this process including frequency, applied voltage, duty cycle, carbon to nitrogen ratio, and the initial phenol concentration were investigated. The optimum operating conditions of the bioreactor were obtained at 5 Hz frequency, 0.4 peak-to-peak voltage (Vpp), C0 = 100 mg.L-1 phenol, pH = 7, C/N = 1, and the sine wave. Phenol was completely degraded under the optimum operating conditions for 2 h. The GC-MS analysis showed the presence of carboxylic acid, oxalic acid, and propionic acid. It was observed that the generated by-products are non-toxic and phenol is completely removed to nontoxic compounds. The results show that under optimum conditions, using an alternating current, the proposed system generated low-hazard byproducts with a low energy consumption.

Keywords: system; using alternating; study; alternating current; microbial electrochemical; electrochemical system

Journal Title: Bioelectrochemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.