In this work, a novel three-chamber modular plant microbial fuel cell (PMFC) was designed and tested for long term sustainable generation of bioelecricity. The modular setup makes operation easy and… Click to show full abstract
In this work, a novel three-chamber modular plant microbial fuel cell (PMFC) was designed and tested for long term sustainable generation of bioelecricity. The modular setup makes operation easy and hassle-free as placing every components, i.e., membranes, electrodes, and even changing the plants, becomes very convenient. The novel membrane assembly design combined with pre-activated electrodes with increased surface area helped promote biofilm growth and electrocatalytic activity on anode and cathode surface. The new design resulted in improved performance and stability of the PMFC system for long term usage with minimal maintenance. The use of composite membrane consisting of clay, bentonite, and fly ash mixture was used for the first time in PMFC research and proved to be an excellent alternative to existing expensive Nafion membranes. The power density and current density has increased up to 24.56 mW m-2 and 52 mA m-2 respectively, which is 63% increase in power production and is amongst the highest in PMFC research.
               
Click one of the above tabs to view related content.