LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On-command on/off switching of progenitor cell and cancer cell polarized motility and aligned morphology via a cytocompatible shape memory polymer scaffold.

Photo by nci from unsplash

In vitro biomaterial models have enabled advances in understanding the role of extracellular matrix (ECM) architecture in the control of cell motility and polarity. Most models are, however, static and cannot… Click to show full abstract

In vitro biomaterial models have enabled advances in understanding the role of extracellular matrix (ECM) architecture in the control of cell motility and polarity. Most models are, however, static and cannot mimic dynamic aspects of in vivo ECM remodeling and function. To address this limitation, we present an electrospun shape memory polymer scaffold that can change fiber alignment on command under cytocompatible conditions. Cellular response was studied using the human fibrosarcoma cell line HT-1080 and the murine mesenchymal stem cell line C3H/10T1/2. The results demonstrate successful on-command on/off switching of cell polarized motility and alignment. Decrease in fiber alignment causes a change from polarized motility along the direction of fiber alignment to non-polarized motility and from aligned to unaligned morphology, while increase in fiber alignment causes a change from non-polarized to polarized motility along the direction of fiber alignment and from unaligned to aligned morphology. In addition, the findings are consistent with the hypothesis that increased fiber alignment causes increased cell velocity, while decreased fiber alignment causes decreased cell velocity. On-command on/off switching of cell polarized motility and alignment is anticipated to enable new study of directed cell motility in tumor metastasis, in cell homing, and in tissue engineering.

Keywords: cell polarized; fiber alignment; command switching; polarized motility; motility; cell

Journal Title: Biomaterials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.