LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An ultra-effective method of generating extramultipotent cells from human fibroblasts by ultrasound.

Photo by nci from unsplash

Multipotent cells have similar basic features of all stem cells but limitation in ability of self-renewal and differentiation compared with pluripotent cells. Here, we have developed an ultra effective, gene-… Click to show full abstract

Multipotent cells have similar basic features of all stem cells but limitation in ability of self-renewal and differentiation compared with pluripotent cells. Here, we have developed an ultra effective, gene- and chemical-free method of generating extra multipotent (xpotent) cells which have differentiation potential more than limited cell types, by the mechanism of ultrasound-directed permeation of environmental transition-guided cellular reprogramming (Entr). Ultrasound stimulus generated a massive number of Entr-mediated xpotent (x/Entr) spheroids from human dermal fibroblasts (HDFs) 6 days after treatment. The emergence of x/Entr was first initiated by the introduction of human embryonic stem cell (ESC) environments into the HDFs to start fast cellular reprogramming including activation of stress-related kinase signaling pathways, subsequent chromatin remodeling, and expression of pluripotent-related genes via transient membrane damage caused by ultrasound-induced cavitation. And then, pluripotent markers were transported into their adjacent HDFs via direct cell-to-cell connections in order to generate xpotent clusters. The features of x/Entr cells were intermediate between pluripotency and multipotency in terms of pluripotency with three germ layer markers, multi-lineage differentiation potential, and no teratoma formation. This physical stimulus-mediated reprogramming strategy was cost-effective, simple, quick, produced significant yields, and was safe, and can therefore provide a new paradigm for clinical application.

Keywords: generating extramultipotent; effective method; cell; method generating; ultra effective

Journal Title: Biomaterials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.