LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Folate receptor-directed orthogonal click-functionalization of siRNA lipopolyplexes for tumor cell killing in vivo.

The delivery of small interfering RNA (siRNA) and its therapeutic usage as an anti-cancer agent requires a carrier system for selective internalization into the cytosol of tumor cells. We prepared… Click to show full abstract

The delivery of small interfering RNA (siRNA) and its therapeutic usage as an anti-cancer agent requires a carrier system for selective internalization into the cytosol of tumor cells. We prepared folate-bearing formulations by first complexing siRNA with the novel azido-functionalized sequence-defined cationizable lipo-oligomer 1106 (containing two cholanic acids attached to an oligoaminoamide backbone in T-shape configuration) into spherical, ∼100-200 nm sized lipopolyplexes, followed by surface-functionalization with various folate-conjugated DBCO-PEG agents. Both the lipo-oligomer and the different defined shielding and targeting agents with mono- and bis-DBCO and varying PEG length were generated by solid phase supported synthesis. A bivalent DBCO surface agent with a PEG24 spacer was identified as the optimal formulation in terms of nanoparticle size, folate receptor (FR) targeting, cellular uptake and gene silencing in vitro. Notably, near-infrared fluorescence bioimaging studies showed that double-click incorporation of bivalent DBCO-PEG24 resulted in siRNA/1106/DBCO2-ss2-PEG24-FolA lipopolyplexes with extended biodistribution and intratumoral delivery in a subcutaneous FR-positive leukemia mouse model. Intravenous administration of analogous therapeutic siRNA lipopolyplexes (directed against the kinesin spindle motor protein EG5) mediated tumoral EG5 mRNA knockdown by ∼60% and, in combination with the novel antitubulin drug pretubulysin, significantly prolonged survival of aggressive leukemia bearing mice without noticeable side effects.

Keywords: sirna lipopolyplexes; folate receptor; functionalization; sirna; tumor

Journal Title: Biomaterials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.