LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection.

Photo from wikipedia

In vivo optical imaging by using a new imaging window located at short-wavelength infrared region (1000-1700 nm, named as NIR II) presents an unprecedented improvement in imaging sensitivity and spatial resolution over… Click to show full abstract

In vivo optical imaging by using a new imaging window located at short-wavelength infrared region (1000-1700 nm, named as NIR II) presents an unprecedented improvement in imaging sensitivity and spatial resolution over the traditional visible and near-infrared light. However, the most developed NIR II-emitters are hardly excreted from live animals, leading to unknown long-term toxicity concerns, which hinder the widespread applications of this advanced imaging technology. Here, we developed a new generation molecular NIR II-emitting probe based on Nd-diethylene triamine pentacetate acid (DTPA) complex. The designed molecular Nd-DTPA probe with bright narrow band emission at 1330 nm is successfully used for highly sensitive in vivo NIR II bioimaging with rapid renal excretion, high biocompatibility and optical-guided tiny tumor (down to ∼3 mm) detection for the first time. Moreover, the Nd-DPTA complex also holds great promise as an X-ray contrast agent. These findings open up the possibility for designing a new generation of multi-modal small molecular probe for early tumor diagnosis and favor the clinic translation of the advanced NIR II imaging method.

Keywords: tumor detection; near infrared; vivo optical; tiny tumor; tumor

Journal Title: Biomaterials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.