LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanuts") and their potential applications in hemostasis.

Uncontrolled hemorrhage, which typically involves the torso and/or limb junctional zones, remains a great challenge in the prehospital setting. Here, we for the first time report an injectable and superelastic… Click to show full abstract

Uncontrolled hemorrhage, which typically involves the torso and/or limb junctional zones, remains a great challenge in the prehospital setting. Here, we for the first time report an injectable and superelastic nanofiber rectangle matrix ("peanut") fabricated by a combination of electrospinning, gas foaming, hydrogel coating and crosslinking techniques. The compressed nanofiber peanut is capable of re-expanding to its original shape in atmosphere, water and blood within 10 s. Such nanofiber peanuts exhibit greater capacity of water/blood absorption compared to current commercial products and high efficacy in whole blood clotting assay, in particular for thrombin-immobilized samples. These nanofiber peanuts are capable of being packed into a syringe for injection. Further in vivo tests indicated the effectiveness of nanofiber peanuts for hemostasis in a porcine liver injury model. This new class of nanofiber-based materials may hold great promise for hemostatic applications.

Keywords: superelastic nanofiber; nanofiber; nanofiber rectangle; hemostasis; injectable superelastic

Journal Title: Biomaterials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.