LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Minimum structural requirements for BMP-2-binding of heparin oligosaccharides.

Photo from archive.org

Bone morphogenetic proteins (BMPs) are essential during tissue repair and remodeling after injury. Glycosaminoglycan (GAG) sugars are known to enhance BMP activity in vitro and in vivo; here the interactions… Click to show full abstract

Bone morphogenetic proteins (BMPs) are essential during tissue repair and remodeling after injury. Glycosaminoglycan (GAG) sugars are known to enhance BMP activity in vitro and in vivo; here the interactions of BMP-2 with various glycosaminoglycan classes were compared and shown to be selective for heparin over other comparable saccharides. The minimal chain lengths and specific sulfate moieties required for heparin-derived oligosaccharide binding to BMP-2, and the ability of such oligosaccharides to promote BMP-2-induced osteogenic differentiation in vitro were then determined. BMP-2 could bind to heparin hexasaccharides (dp6) and octasaccharides (dp8), but decasaccharides (dp10) were the minimum chain length required for both efficient binding of BMP-2 and consequent heparin-dependent cell responses. N-sulfation is the most important, and 6-O-sulfation moderately important for BMP-2 binding and activity, whereas 2-O-sulfation was much less critical. Bone formation assays in vivo further confirmed that dp10, N-sulfated heparin oligosaccharides were the minimal requirement for effective enhancement of BMP-2-induced bone formation. Such information is necessary for the rational design of the next generations of heparan-based devices for bone tissue repair.

Keywords: structural requirements; heparin; minimum structural; bmp binding; requirements bmp; heparin oligosaccharides

Journal Title: Biomaterials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.