LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-invasive and real-time measurement of microvascular barrier in intact lungs.

Photo by jontyson from unsplash

Microvascular leak is a phenomenon witnessed in multiple disease states. In organ engineering, regaining a functional barrier is the most crucial step towards creating an implantable organ. All previous methods… Click to show full abstract

Microvascular leak is a phenomenon witnessed in multiple disease states. In organ engineering, regaining a functional barrier is the most crucial step towards creating an implantable organ. All previous methods of measuring microvascular permeability were either invasive, lengthy, introduced exogenous macromolecules, or relied on extrapolations from cultured cells. We present here a system that enables real-time measurement of microvascular permeability in intact rat lungs. Our unique system design allows direct, non-invasive measurement of average alveolar and capillary pressures, tracks flow paths within the organ, and enables calculation of lumped internal resistances including microvascular barrier. We first describe the physiology of native and decellularized lungs and the inherent properties of the extracellular matrix as functions of perfusion rate. We next track changing internal resistances and flows in injured native rat lungs, resolving the onset of microvascular leak, quantifying changing vascular resistances, and identifying distinct phases of organ failure. Finally, we measure changes in permeability within engineered lungs seeded with microvascular endothelial cells, quantifying cellular effects on internal vascular and barrier resistances over time. This system marks considerable progress in bioreactor design for intact organs and may be used to monitor and garner physiological insights into native, decellularized, and engineered tissues.

Keywords: barrier; real time; time measurement; measurement microvascular; time

Journal Title: Biomaterials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.