LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy.

Photo by finnnyc from unsplash

Checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, have been proven as a promising type of immunotherapy in a number of cancers, but the relatively low response rates limit their scope of… Click to show full abstract

Checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, have been proven as a promising type of immunotherapy in a number of cancers, but the relatively low response rates limit their scope of clinical application. Here, we report the use of cascade chemo-photodynamic therapy (chemo-PDT) with reactive oxygen species (ROS)-sensitive lipid-polymer hybrid nanoparticles TKHNP-C/D to potentiate the antitumor efficacy of anti-PD-L1 antibody (aPD-L1). Under light irradiation, TKHNP-C/D not only induced photodynamic therapy (PDT) but also boosted intracellular DOX release via the rapid degradation of its hydrophobic core, promoting an efficient cascade of chemo-PDT to inhibit tumor growth by a single treatment. More importantly, the cascade chemo-PDT could evoke anticancer immune responses and efficiently synergize with aPD-L1 to generate an abscopal effect, which could simultaneously inhibit primary and distant tumor growth.

Keywords: photodynamic therapy; chemo; chemo photodynamic; cascade chemo; checkpoint

Journal Title: Biomaterials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.