Multi-component nucleic acid enzymes (MNAzymes) are allosteric deoxyribozymes that are activated upon binding of a specific nucleic acid effector. MNAzyme activity is limited due to an insufficient assembly of the… Click to show full abstract
Multi-component nucleic acid enzymes (MNAzymes) are allosteric deoxyribozymes that are activated upon binding of a specific nucleic acid effector. MNAzyme activity is limited due to an insufficient assembly of the MNAzyme and its turnover. In this work, we describe the successful improvement of MNAzyme reactivity and selectivity by addition of cationic copolymers, which exhibit nucleic acid chaperone-like activity. The copolymer allowed a 210-fold increase in signal activity and a 95-fold increase in the signal-to-background selectivity of MNAzymes constructed for microRNA (miRNA) detection. The selectivity of the MNAzyme for homologous miRNAs was demonstrated in a multiplex format in which isothermal reactions of two different MNAzymes were performed. In addition, the copolymer permitted miRNA detections even in the presence of a ribonuclease which is ubiquitous in environments, indicating the protective effect of the copolymer against ribonucleases.
               
Click one of the above tabs to view related content.