LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model.

Photo from wikipedia

Non-alcoholic steatohepatitis (NASH) is associated with liver fibrosis and cirrhosis, which eventually leads to hepatocellular carcinoma. Although several animal models were developed to understand the mechanisms of NASH pathogenesis and… Click to show full abstract

Non-alcoholic steatohepatitis (NASH) is associated with liver fibrosis and cirrhosis, which eventually leads to hepatocellular carcinoma. Although several animal models were developed to understand the mechanisms of NASH pathogenesis and progression, it remains obscure. A 3D organoid culture system can recapitulate organ structures and maintain gene expression profiles of original tissues. We therefore tried to generate liver organoids from different degrees [defined as mild (NASH A), moderate (NASH B) and severe (NASH C)] of methionine- and choline-deficient diet-induced NASH model mice and analyzed the difference of their architecture, cell components, organoid-forming efficacy, and gene expression profiles. Organoids from each stage of NASH model mice were successfully generated. Interestingly, epithelial-mesenchymal transition was observed in NASH C organoids. Expression of Collagen I and an activated hepatic stellite cell marker, α-sma was upregulated in the liver organoids from NASH B and C mice. The analysis of RNA sequencing revealed that several novel genes were upregulated in all NASH liver organoids. These results suggest that our generated liver organoids from different stages of NASH diseased mice might become a useful tool for in vitro studies of the molecular mechanism of NASH development and also for identifying novel biomarkers for early diagnosis of NASH disease.

Keywords: non alcoholic; alcoholic steatohepatitis; liver; steatohepatitis nash; model; nash

Journal Title: Biomaterials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.