LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Versatile gadolinium(III)-phthalocyaninate photoagent for MR/PA imaging-guided parallel photocavitation and photodynamic oxidation at single-laser irradiation.

Photo by julienlphoto from unsplash

Current light-mediated photodynamic therapy (PDT) is far underutilized in clinical cancer treatment due to its low pharmacological effect. We herein proposed a new gadolinium(III)-phthalocyanine (GdPc)-enabled phototherapeutics, photoacoustic/dynamic therapy (PADT), towards… Click to show full abstract

Current light-mediated photodynamic therapy (PDT) is far underutilized in clinical cancer treatment due to its low pharmacological effect. We herein proposed a new gadolinium(III)-phthalocyanine (GdPc)-enabled phototherapeutics, photoacoustic/dynamic therapy (PADT), towards in vivo solid tumors via parallel-produced photocavitation and photodynamic oxidation with excitation by a single pulsed laser. We demonstrated that pulsed irradiation of GdPc could simultaneously produce an intense acoustic effect and a high-level 1O2 quantum yield to afford mitochondrial damage and initiate programmed cell death. Under the guidance of magnetic resonance/photoacoustic dual-modal imaging, the mechanical oxygen-independent destruction of acoustic cavitation and the chemical damage of 1O2 were validated to afford combinatorial inhibition of tumors under either normal or hypoxic conditions after the agent delivered into the cancer cells by a pH-sensitive nanomicelle. The single-laser initiated PADT using GdPc as a versatile photoagent maximizes the use of light energy to minimize the dose requirement of oxygen and agent towards high therapeutic efficacy, surpassing dramatically over conventional PDT.

Keywords: single laser; photocavitation photodynamic; photodynamic oxidation; laser; gadolinium iii

Journal Title: Biomaterials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.