LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D & 3D QSAR, in vivo radiolabeling and bio distribution studies.

Photo by edhoradic from unsplash

Type 2 diabetes (T2D) is a severe disease and it is one of the most raising problems worldwide. This study deals with design, synthesis and in vivo determination of a… Click to show full abstract

Type 2 diabetes (T2D) is a severe disease and it is one of the most raising problems worldwide. This study deals with design, synthesis and in vivo determination of a new set of tetralin-sulfonamide derivatives as anti-diabetic and dipeptidyl peptidase-IV (DPP-4) inhibiting agents. Most of the new compounds exhibited significant hypoglycemic effect alongside with DPP-4 suppression potency considering sitagliptin as a reference drug. The most promising compounds 4, 15 showed 2.80 nM DPP-4 IC50 with 20-40 folds selectivity over DPP-8 and DPP-9. 2D and 3D QSAR models were performed using auto QSAR of Schrödinger, QuaSAR of MOE and 3D Field-based QSAR of Schrödinger, respectively. The experimental results revealed that the alignment-independent descriptors, electrostatic and steric field descriptors were significantly correlated with the antidiabetic activity of the new derivatives. In addition, the new compounds were docked in the active site of DPP-4 in reference to sitagliptin to rationalize the binding modes of the compounds with the amino acid residues of the enzyme. Furthermore, 131I-compound 4 complex was selected to evaluate the pharmacokinetic behavioral profile of compound 4 and its body organs uptakes alongside its elimination pathway as a representative example for the rest of the analogues. The bio distribution pattern of the tracer proved the selective accumulation of 131I-substrate in the pancreas and rapid clearance from most of the body organs.

Keywords: bio distribution; design synthesis; tetralin sulfonamide; sulfonamide derivatives

Journal Title: Bioorganic chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.