We investigated twelve benzyl phenyl ketone derivatives which are synthetic precursors of isoflavonoids that are shown be good 5-hLOX inhibitors, especially those that have the catechol group, but these precursors… Click to show full abstract
We investigated twelve benzyl phenyl ketone derivatives which are synthetic precursors of isoflavonoids that are shown be good 5-hLOX inhibitors, especially those that have the catechol group, but these precursors never have been assayed as 5-hLOX inhibitors being a novelty as inhibitors of the enzyme, due to sharing important structural characteristics. Screening assays, half maximal inhibitory concentration (IC50) and kinetic assays of all the studied molecules (5 µg/ml in media assay) showed that 1-(2,4-dihydroxy-3-methylphenyl)-2-(3-chlorophenyl)-ethanone (K205; IC50 = 3.5 µM; Ki = 4.8 µM) and 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-nitrophenyl)-ethanone (K206; IC50 = 2.3 µM; Ki = 0.7 µM) were potent, selective, competitive and nonredox inhibitors of 5-hLOX. Antioxidant behavior was also assayed by DPPH, FRAP, and assessing ROS production, and those with antibacterial and antiproliferative properties relating to 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-chlorophenyl)-ethanone (K208) established it as the most interesting and relevant compound studied, as it showed nearly 100% inhibition of bacterial growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, docking studies were done that helped to characterize how the inhibitor structures correlated to decreased 5-hLOX activity.
               
Click one of the above tabs to view related content.