LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The first target specific, highly diastereoselective synthesis, design and characterization of pyranoquinolinyl acrylic acid diastereomers as potential α-glucosidase inhibitors.

Photo by ggfujyoj from unsplash

In the present investigation we report the first target specific, highly diastereoselective synthesis of new class of pyranoquinolinyl/furoquinolinyl-acrylic acid diastereomers and evaluation of their invitro α-glucosidase inhibitory activity. All the… Click to show full abstract

In the present investigation we report the first target specific, highly diastereoselective synthesis of new class of pyranoquinolinyl/furoquinolinyl-acrylic acid diastereomers and evaluation of their invitro α-glucosidase inhibitory activity. All the products were thoroughly characterized by 1H NMR, 13C NMR, FT-IR, Mass spectral and CHN analysis. A highly diastereoselective target specific route of synthesis for the biologically active diastereomers were developed by usingchiral catalyst Europium tris[3-heptafluoropropylhydroxyl methylene]-(-)-camphorate (A) or Europiumtris[3-(trifluoromethyl)hydroxylmethylene]-(+)-camphorate (B). It was found that among a set of 4 diastereomeric products obtained, exodiasteromers of pyranoquinolinyl acrylic acid adducts exhibited relatively high α-glucosidase inhibitory activity. The newly synthesized compounds exhibited IC50 values in the range of (0.40 ± 0.02-30.3 ± 0.84 μM) as compared to standard acarbose (IC50 = 0.65 ± 0.02 μM). It was found that compounds 11a, 11c, 11d and 12d were found to be more active than standard acarbose. It was also found that unsubstituted compound (11a) or compounds with chlorine or methoxy substituent (11c, 11d, 12d) showed potential α-glucosidase inhibitory activity. However a reversal in activity was observed with Nitro substituent (11b, 13b) wherein the endodiastereomers were found to be more active than exodiastereomers. Molecular docking studies were used for design of the compound and understand the mode of binding between the compound and target enzyme. A plausible mechanism for the diastereoselective synthesis was also proposed.

Keywords: target specific; diastereoselective synthesis; acrylic acid; highly diastereoselective; glucosidase; synthesis

Journal Title: Bioorganic chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.