LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

1,4-Dihydroquinazolin-3(2H)-yl benzamide derivatives as anti-inflammatory and analgesic agents with an improved gastric profile: Design, synthesis, COX-1/2 inhibitory activity and molecular docking study.

Photo by jontyson from unsplash

The design and synthesis of a new series of 1,4-dihydroquinazolin-3(2H)-yl benzamide derivatives (4a-o) as anti-inflammatory and analgesic agents and COX-1/2 inhibitors are reported. The target compounds (4a-o) were synthesized using… Click to show full abstract

The design and synthesis of a new series of 1,4-dihydroquinazolin-3(2H)-yl benzamide derivatives (4a-o) as anti-inflammatory and analgesic agents and COX-1/2 inhibitors are reported. The target compounds (4a-o) were synthesized using a two-step scheme, and their chemical structures were confirmed with 1H NMR, 13C NMR, and mass spectra and elemental analysis. Compounds 4b, 4d, 4h, 4l, 4n and 4o showed the best in vitro COX-2 inhibitory activity (IC50 0.04-0.07 μM), which was nearly the same as that of the reference drug celecoxib (IC50 0.049 μM), but had a lower selectivity index, as dictated in our target design. In the in vivo anti-inflammatory inhibition assay, compounds 4b, 4c, 4e, 4f, 4m and 4o showed better oedema inhibition percentages, ranging from 38.1% to 54.1%, than did diclofenac sodium (37.8%). An in vivo analgesic assay revealed that compounds 4b and 4n had a potential analgesic effect 4- to 21-fold more potent than that of indomethacin and diclofenac sodium. All the tested compounds showed an improved ulcerogenic index when compared to indomethacin. In the synthesized series, compound 4b showed the best biological activity in all the experiments. The docking study results agreed with the in vitro COX inhibition assay results. Moreover, the predicted in silico studies of all the compounds support their potential as drug candidates.

Keywords: anti inflammatory; design synthesis; dihydroquinazolin benzamide; activity; benzamide derivatives; design

Journal Title: Bioorganic chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.