LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Click chemistry-assisted synthesis of novel aminonaphthoquinone-1,2,3-triazole hybrids and investigation of their cytotoxicity and cancer cell cycle alterations.

Photo from wikipedia

A series of 12 novel 1,4-naphthoquinone-1,2,3-triazole hybrids were designed and synthesized through copper-catalyzed click reaction of 2-(prop-2-ynylamino)naphthalene-1,4-dione (3) and different azidomethyl-benzene derivatives. The synthesized compounds were assessed for their anticancer… Click to show full abstract

A series of 12 novel 1,4-naphthoquinone-1,2,3-triazole hybrids were designed and synthesized through copper-catalyzed click reaction of 2-(prop-2-ynylamino)naphthalene-1,4-dione (3) and different azidomethyl-benzene derivatives. The synthesized compounds were assessed for their anticancer activity against three cancer cell lines (MCF-7, HT-29 and MOLT-4) by MTT assay. The results showed that the majority of the synthesized compounds displayed cytotoxic activity. Derivatives 6f and 6h, bearing 4-trifluoromethyl-benzyl and 4-tert-butyl-benzyl groups, respectively, as well as intermediate 3 demonstrated good cytotoxic potential against all tested cancer cell lines, among which compound 6f showed the highest activity. Flow cytometric analysis revealed that compounds 3, 6f and 6h arrested cell cycle at G0/G1 phase in MCF-7 cells. Therefore, synthesized aminonaphthoquinone-1,2,3-triazole derivatives can be introduced as promising molecules for further development as potential anticancer agents.

Keywords: triazole hybrids; chemistry; cell cycle; cancer cell; cell

Journal Title: Bioorganic chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.