Structure-activity relationship studies were conducted in the search for 1,3-thiazole isosteric analogs of imidazopyridine drugs (Zolpidem, Alpidem). Three series of novel γ-aminobutyric acid receptor (GABAAR) ligands belonging to imidazo[2,1-b]thiazoles, imidazo[2,1-b][1,3,4]thiadiazoles,… Click to show full abstract
Structure-activity relationship studies were conducted in the search for 1,3-thiazole isosteric analogs of imidazopyridine drugs (Zolpidem, Alpidem). Three series of novel γ-aminobutyric acid receptor (GABAAR) ligands belonging to imidazo[2,1-b]thiazoles, imidazo[2,1-b][1,3,4]thiadiazoles, and benzo[d]imidazo[2,1-b]thiazoles were synthesized and characterized as active agents against GABAAR benzodiazepine-binding site. In each of these series, potent compounds were discovered using a radioligand competition binding assay. The functional properties of highest-affinity compounds 28 and 37 as GABAAR positive allosteric modulators (PAMs) were determined by electrophysiological measurements. In vivo studies on zebrafish demonstrated their potential for the further development of anxiolytics. Using the OECD "Fish, Acute Toxicity Test" active compounds were found safe and non-toxic. Structural bases for activity of benzo[d]imidazo[2,1-b]thiazoles were proposed using molecular docking studies. The isosteric replacement of the pyridine nuclei by 1,3-thiazole, 1,3,4-thiadiazole, or 1,3-benzothiazole in the ring-fused imidazole class of GABAAR PAMs was shown to be promising for the development of novel hypnotics, anxiolytics, anticonvulsants, and sedatives drug-candidates.
               
Click one of the above tabs to view related content.