LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biotransformations of anthranilic acid and phthalimide to potent antihyperlipidemic alkaloids by the marine-derived fungus Scedosporium apiospermum F41-1.

Photo by bermixstudio from unsplash

A new diphenylamine derivative, scediphenylamine A (1), together with six phthalimide derivatives (2-7) and ten other known compounds (8-17) were obtained from the marine-derived fungus Scedosporium apiospermum F41-1 fed with… Click to show full abstract

A new diphenylamine derivative, scediphenylamine A (1), together with six phthalimide derivatives (2-7) and ten other known compounds (8-17) were obtained from the marine-derived fungus Scedosporium apiospermum F41-1 fed with synthetically prepared anthranilic acid and phthalimide. The structure and absolute configuration of the new compound were determined by HRMS, NMR, and X-ray crystallography. Evaluation of their lipid-lowering effect in 3T3-L1 adipocytes showed that scediphenylamine A (1), N-phthaloyl-tryptophan-methyl ester (4), 5-(1,3-dioxoisoindolin-2-yl) pentanamide (5), perlolyrine (10) and flazine (11) significantly reduced triglyceride level in 3T3-L1 cells by inhibiting adipogenic differentiation and synthesis with the EC50 values of 4.39, 2.79, 3.76, 0.09, and 4.52 μM, respectively. Among them, perlolyrine (10) showed the most potent activity, making it a candidate for further development as a potential agent to treat hyperlipidemia.

Keywords: derived fungus; scedosporium apiospermum; apiospermum f41; anthranilic acid; fungus scedosporium; marine derived

Journal Title: Bioorganic chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.