The bacterial deacetylase LpxC is a promising target for the development of novel antibiotics being selectively active against Gram-negative bacteria. In chiral pool syntheses starting from d- and l-ribose, a… Click to show full abstract
The bacterial deacetylase LpxC is a promising target for the development of novel antibiotics being selectively active against Gram-negative bacteria. In chiral pool syntheses starting from d- and l-ribose, a series regio- and stereoisomeric monohydroxytetrahydrofuran derivatives was synthesized and tested for LpxC inhibitory and antibacterial activities. Molecular docking studies were performed to rationalize the obtained structure-activity relationships. The (2S,3R,5R)-configured 3-hydroxytetrahydrofuran derivative ent-8 ((2S,3R,5R)-N,3-Dihydroxy-5-(4-{[4-(morpholinomethyl)phenyl]ethynyl}phenyl)tetrahydrofuran-2-carboxamide) was found to be the most potent LpxC inhibitor (Ki = 3.5 µM) of the synthesized series of monohydroxytetrahydrofuran derivatives and to exhibit the highest antibacterial activity against E. coli BL21(DE3) and the D22 strain.
               
Click one of the above tabs to view related content.