LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioactive imidamide-based compounds targeted against nitric oxide synthase.

Photo by ofisia from unsplash

The selective inhibition of inducible nitric oxide synthase (iNOS) has become an interesting goal for the treatment of diseases where the immune and inflammatory response of the organism is involved.… Click to show full abstract

The selective inhibition of inducible nitric oxide synthase (iNOS) has become an interesting goal for the treatment of diseases where the immune and inflammatory response of the organism is involved. Septic shock is one prominent example of this type of affections. In this paper, the design and synthesis of twelve substituted pyridinyl- imidamide derivatives is described, together with their biological evaluation as NOS inhibitors. The most potent and selective compound was N-(3-hydroxy-3-(pyridin-3-yl)propyl)acetimidamide 9a (IC50 = 4.6 µM, against iNOS). Pharmacological assays in aortic rat tissue, have confirmed its inhibitory activity on iNOS and the absence of undesired cardicovascular effects. In silico analysis of the most promising compounds (9a, 9b, 9e and 9g) have predicted good drug-likeness properties. Furthermore, they have shown an adequate cell viability. Docking studies carried out on 9a suggest a particular binding mode that involves the essential residue Glu377, and might explain its iNOS selectivity. From a chemical point of view, the article describes an unusual cyclization to obtain pyridinyl-pyrimidine derivatives with high yield.

Keywords: oxide synthase; nitric oxide; imidamide based; bioactive imidamide; based compounds

Journal Title: Bioorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.