LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and evaluation of biarylquinoline derivatives as novel HIF-1α inhibitors.

Photo by nci from unsplash

Hypoxia-inducible factor (HIF)-1α is a key transcription factor that contributes to aggressive and drug-resistant phenotypes in tumor cells under hypoxic conditions. Therefore, targeting HIF-1α represents a promising therapeutic strategy for… Click to show full abstract

Hypoxia-inducible factor (HIF)-1α is a key transcription factor that contributes to aggressive and drug-resistant phenotypes in tumor cells under hypoxic conditions. Therefore, targeting HIF-1α represents a promising therapeutic strategy for cancer drug development. In the present study, we designed, synthesized, and evaluated a new series of biarylquinoline derivatives as potential HIF-1α inhibitors based on structure-activity relationship. Among these derivatives, compound 7f represents the optimal agent with IC50 values of 28 nM and 15 nM in suppressing the viability of MiaPaCa-2 and MDA-MB-231 cells, respectively. Compound 7f also exhibited potent efficacy in inhibiting hypoxia-induced migration of MDA-MB-231 and MiaPaCa-2 cells. Mechanistically, compound 7f suppressed HIF-1α expression by blocking transcription and protein translation, in lieu of facilitating protein degradation. Moreover, this HIF-1α downregulation was associated with compound 7f's ability to concomitantly inhibit multiple signaling pathways governing HIF-1 α expression at different levels, including those mediated by STAT3, MEK/ERK MAPK, and mTOR/4E-BP1. Together, these findings underscore the translational potential of these biarylquinoline derivatives to be developed as novel HIF-1α inhibitors, which warrants further investigations.

Keywords: hif inhibitors; biarylquinoline derivatives; synthesis evaluation; novel hif

Journal Title: Bioorganic chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.