LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CB1 Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal

Photo from wikipedia

BACKGROUND Tobacco withdrawal is associated with deficits in cognitive function, including attention, working memory, and episodic memory. Understanding the neurobiological mechanisms involved in these effects is crucial because cognitive deficits… Click to show full abstract

BACKGROUND Tobacco withdrawal is associated with deficits in cognitive function, including attention, working memory, and episodic memory. Understanding the neurobiological mechanisms involved in these effects is crucial because cognitive deficits during nicotine withdrawal may predict relapse in humans. METHODS We investigated in mice the role of CB1 cannabinoid receptors (CB1Rs) in memory impairment and spine density changes induced by nicotine withdrawal precipitated by the nicotinic antagonist mecamylamine. Drugs acting on the endocannabinoid system and genetically modified mice were used. RESULTS Memory impairment during nicotine withdrawal was blocked by the CB1R antagonist rimonabant or the genetic deletion of CB1R in forebrain gamma-aminobutyric acidergic (GABAergic) neurons (GABA-CB1R). An increase of 2-arachidonoylglycerol (2-AG), but not anandamide, was observed during nicotine withdrawal. The selective inhibitor of 2-AG biosynthesis O7460 abolished cognitive deficits of nicotine abstinence, whereas the inhibitor of 2-AG enzymatic degradation JZL184 did not produce any effect in cognitive impairment. Moreover, memory impairment was prevented by the selective mammalian target of rapamycin inhibitor temsirolimus and the protein synthesis inhibitor anisomycin. Mature dendritic spines on CA1 pyramidal hippocampal neurons decreased 4 days after the precipitation of nicotine withdrawal, when the cognitive deficits were still present. Indeed, a correlation between memory performance and mature spine density was found. Interestingly, these structural plasticity alterations were normalized in GABA-CB1R conditional knockout mice and after subchronic treatment with rimonabant. CONCLUSIONS These findings underline the interest of CB1R as a target to improve cognitive performance during early nicotine withdrawal. Cognitive deficits in early abstinence are associated with increased relapse risk.

Keywords: cognitive deficits; cannabinoid receptors; cb1 cannabinoid; structural plasticity; withdrawal; nicotine withdrawal

Journal Title: Biological Psychiatry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.