LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Apolipoprotein E Antagonist Functionally Blocks Apolipoprotein E Interaction With N-terminal Amyloid Precursor Protein, Reduces β-Amyloid-Associated Pathology, and Improves Cognition

Photo from wikipedia

BACKGROUND The ɛ4 isoform of apolipoprotein E (apoE4) is a major genetic risk factor for the development of sporadic Alzheimer's disease (AD), and its modification has been an intense focus… Click to show full abstract

BACKGROUND The ɛ4 isoform of apolipoprotein E (apoE4) is a major genetic risk factor for the development of sporadic Alzheimer's disease (AD), and its modification has been an intense focus for treatment of AD during recent years. METHODS We investigated the binding of apoE, a peptide corresponding to its low-density lipoprotein receptor binding domain (amino acids 133-152; ApoEp), and modified ApoEp to amyloid precursor protein (APP) and their effects on amyloid-β (Aβ) production in cultured cells. Having discovered a peptide (6KApoEp) that blocks the interaction of apoE with N-terminal APP, we investigated the effects of this peptide and ApoEp on AD-like pathology and behavioral impairment in 3XTg-AD and 5XFAD transgenic mice. RESULTS ApoE and ApoEp, but not truncated apoE lacking the low-density lipoprotein receptor binding domain, physically interacted with N-terminal APP and thereby mediated Aβ production. Interestingly, the addition of 6 lysine residues to the N-terminus of ApoEp (6KApoEp) directly inhibited apoE binding to N-terminal APP and markedly limited apoE- and ApoEp-mediated Aβ generation, presumably through decreasing APP cellular membrane trafficking and p44/42 mitogen-activated protein kinase phosphorylation. Moreover, while promoting apoE interaction with APP by ApoEp exacerbated Aβ and tau brain pathologies in 3XTg-AD mice, disrupting this interaction by 6KApoEp ameliorated cerebral Aβ and tau pathologies, neuronal apoptosis, synaptic loss, and hippocampal-dependent learning and memory impairment in 5XFAD mice without altering cholesterol, low-density lipoprotein receptor, and apoE expression levels. CONCLUSIONS These data suggest that disrupting apoE interaction with N-terminal APP may be a novel disease-modifying therapeutic strategy for AD.

Keywords: precursor protein; pathology; amyloid precursor; interaction; terminal app

Journal Title: Biological Psychiatry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.