LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Separation of saccharides from prehydrolysis liquor of lignocellulose to upgrade dissolving pulp mill into biorefinery platform.

Photo by nathanspowers from unsplash

In this work, a competitive process consisting of polyelectrolyte flocculation, active carbon absorption, and ion exchange was developed for hemicelluloses-derived saccharides (HDSs) purification from prehydrolysis liquor (PHL) of lignocellulose. Results… Click to show full abstract

In this work, a competitive process consisting of polyelectrolyte flocculation, active carbon absorption, and ion exchange was developed for hemicelluloses-derived saccharides (HDSs) purification from prehydrolysis liquor (PHL) of lignocellulose. Results showed that colloidal lignin counted for 20% of non-saccharide compounds (NSCs) and could be eliminated by flocculation at 500mg/L polyaluminium chloride and 50mg/L anionic polyacrylamide. Active carbon was very effective for decoloration of flocculation-treated PHL, but showed limited absorption selectivity toward NSCs. Lignin, the dominant component of NSCs, is characterized with phenolic hydrogen groups. Phenolic lignin could be easily captured by anion exchange resin with 80% removal. The proposed process showed great industrial potential because of the high value saccharides, but also low molecular phenolic lignin.

Keywords: liquor; lignin; liquor lignocellulose; saccharides prehydrolysis; separation saccharides; prehydrolysis liquor

Journal Title: Bioresource technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.