LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor.

Photo by muhammad_faseeh_786 from unsplash

Some inorganic nitrogen sources and amino acids instead of yeast extract, which resulted in trouble of product purification, were introduced for 1,3-dihydroxyacetone (DHA) production by biotransformation with Gluconobacter oxydans. The… Click to show full abstract

Some inorganic nitrogen sources and amino acids instead of yeast extract, which resulted in trouble of product purification, were introduced for 1,3-dihydroxyacetone (DHA) production by biotransformation with Gluconobacter oxydans. The results showed that urea is an optimal nitrogen source. Furthermore, the effects of glycerol- and urea-feeding strategies for DHA production by immobilized cells in a home-made bubble column bioreactor were optimized. Cells immobilization was prepared by cultivation in the bioreactor packed with porous ceramics, and then the broth was removed. Then, repeated biotransformation by continuous-feeding of glycerol and urea was developed. Up to 96.4±4.1g/L of average DHA concentration with 94.8±2.2% of average conversion rate of glycerol to DHA was achieved after 12 cycles of run. Near colorless DHA solution with few impurities was obtained and the production cost could be decreased.

Keywords: glycerol urea; gluconobacter oxydans; bioreactor; biotransformation; urea feeding

Journal Title: Bioresource technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.