LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process.

Photo from wikipedia

Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process performed by NC10 phylum, which plays an important role in greenhouse gases (GHG) reduction. In this study, co-existence of n-damo… Click to show full abstract

Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process performed by NC10 phylum, which plays an important role in greenhouse gases (GHG) reduction. In this study, co-existence of n-damo bacteria and methanogens was successfully achieved by using upflow anaerobic sludge blanket (UASB) reactor. Reactor with inorganic carbon source (CO2/H2) showed the highest abundance of n-damo bacteria and the highest n-damo potential activity, resulted in its highest nitrogen removal rate. Significant reduction in GHG was obtained after introduction of n-damo process, especially for N2O. Furthermore, GHG emissions decreased with the increase of n-damo bacteria abundance. Community structure analysis found carbon source could influence the diversity of n-damo bacteria indirectly. And phylogenetic analysis showed that all the obtained sequences were assigned to group B, mainly due to in situ production and consumption of CH4.

Keywords: reduction; damo; dependent anaerobic; nitrite dependent; process; anaerobic methane

Journal Title: Bioresource technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.