LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) under photoautotrophy and heterotrophy by non-heterocystous N2-fixing cyanobacterium.

Photo by nickkimel from unsplash

The photoautotrophically grown cyanobacterium Oscillatoria okeni TISTR 8549 was found to produce bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). This PHBV production occurred under nitrogen deprivation (-N) that yielded PHBV accumulation of 14±4% (w/w… Click to show full abstract

The photoautotrophically grown cyanobacterium Oscillatoria okeni TISTR 8549 was found to produce bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). This PHBV production occurred under nitrogen deprivation (-N) that yielded PHBV accumulation of 14±4% (w/w DW) in which 3-hydroxyvalerate accounted for 5.5mol%. The heterotrophically grown (-N condition with acetate supplementation) cells under light showed no increase of PHBV storage, but under dark condition these cells increased PHBV accumulation to 42±8% (w/w DW) with 6.5mol% of 3-hydroxyvalerate. Compared to poly-3-hydroxybutyrate (PHB), the PHBV from O. okeni had a lower melting temperature by 5-7°C, a higher % elongation at break by 4-7times and a greater Young's elastic modulus by 2.3-2.5times.

Keywords: cyanobacterium; poly hydroxybutyrate; hydroxybutyrate hydroxyvalerate; hydroxyvalerate

Journal Title: Bioresource technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.