LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment upon heterotrophic microalgae screened from wastewater microbiota for concurrent pollutants removal and biofuel production.

Photo from wikipedia

Heterotrophic microalgae, capable of converting organic carbons to biofuel, as well as assimilating nutrients, have a great prospective in wastewater treatment. Meanwhile, the knowledge about heterotrophic microalgae is still far… Click to show full abstract

Heterotrophic microalgae, capable of converting organic carbons to biofuel, as well as assimilating nutrients, have a great prospective in wastewater treatment. Meanwhile, the knowledge about heterotrophic microalgae is still far less than the autotrophic conterpart. Hence, in this study, 20 heterotrophic microalgal strains were isolated from a domestic wastewater treatment plant, and identified according to morphology and partial 18S and 23S rRNA gene sequences. Further, their biological traits were assessed in terms of N, P, TOC removal efficiencies, growth parameters, self-settleability and lipids production, expressed through a comprehensive selection index. By such, the optimal strains were chosen and applied back to treat the real wastewater, with or without pretreatment of sterilization. An organic-adaptable strain, i.e., Botryococcus sp. NJD-1, was ultimately recommended to achieve the concurrent biofuel production (up to 61.7% lipid content) and pollutants removal (up to 64.5%, 89.8% and 67.9% for N, P and TOC) in pristine wastewater.

Keywords: production; heterotrophic microalgae; biofuel production; wastewater; pollutants removal

Journal Title: Bioresource technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.