LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conversion of levulinic acid into alkyl levulinates: Using lipase immobilized on meso-molding three-dimensional macroporous organosilica as catalyst.

Photo by sharonmccutcheon from unsplash

For conversion of biomass-derived levulinic acid into alkyl levulinates, a novel kind of lipase-based biocatalyst was prepared through immobilized lipase B from C. antarctica (CALB) on organosilica material with highly… Click to show full abstract

For conversion of biomass-derived levulinic acid into alkyl levulinates, a novel kind of lipase-based biocatalyst was prepared through immobilized lipase B from C. antarctica (CALB) on organosilica material with highly ordered 3D macroporous organosilica frameworks and a 2D hexagonal meso-structure (named 3DOM/m-OS) for the first time. The catalytic performance of the immobilized lipase (NER@3DOM/m-OS) was investigated. NER@3DOM/m-OS was used as biocatalyst to catalyze the esterification reaction between levulinic acid (LA) and n-butanol. Under optimized reaction conditions, 74.59% of ester yield was achieved after 12h of reaction. NER@3DOM/m-OS was also used to production of other alkyl levulinates, the ester yields increased to 84.51% (octyl levulinate) and 91.14% (dodecyl levulinate), respectively. When NER@3DOM/m-OS was used repeatedly in batch reactions, the ester yields of n-butyl, octyl, and dodecyl levulinate could retain 46.18%, 82.33% and 81.25% after 9 reaction cycles, respectively, which was better than commercial lipase Novozym 435 under the same condition.

Keywords: levulinic acid; macroporous organosilica; acid alkyl; alkyl levulinates

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.