LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis.

Photo from wikipedia

The thermal decomposition of sorghum straw was investigated by non-isothermal thermogravimetric analysis, where the determination of kinetic triplet (activation energy, pre-exponential factor, and reaction model), was the key objective. The… Click to show full abstract

The thermal decomposition of sorghum straw was investigated by non-isothermal thermogravimetric analysis, where the determination of kinetic triplet (activation energy, pre-exponential factor, and reaction model), was the key objective. The activation energy was determined using different isoconversional methods: Friedman, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Starink, Iterative method of Chai & Chen, Vyazovkin AIC method, and Li & Tang equation. The pre-exponential factor was calculated using Kissinger's equation; while the reaction model was predicted by comparison of z-master plot obtained from experimental values with the theoretical plots. The values of activation energy obtained from isoconversional methods were further used for evaluation of thermodynamic parameters, enthalpy, entropy and Gibbs free energy. Results showed three zones of pyrolysis having average activation energy values of 151.21kJ/mol, 116.15kJ/mol, and 136.65kJ/mol respectively. The data was well fitting with two-dimension 'Valensi' model for conversion values from 0 to 0.4 with a coefficient of determination (R2) value of 0.988, and with third order reaction model for values from 0.4 to 0.9 with an R2 value of 0.843.

Keywords: sorghum straw; activation energy; energy; thermogravimetric analysis; thermal decomposition

Journal Title: Bioresource technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.