LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

Photo by o5ky from unsplash

To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The… Click to show full abstract

To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL-1 with the maximum biomass productivity of 460mgL-1d-1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL-1 waste glycerol addition, the average biomass production of 16.7gm-2d-1, lipid content of 23.6%, and the removal of 2.4gm-2d-1 NH4+-N, 2.7gm-2d-1 total nitrogen, 3.0gm-2d-1 total phosphorous, and 103.0gm-2d-1 of COD were attained for 34days semi-continuous mode.

Keywords: biomass; biomass production; pilot scale; wastewater; waste glycerol

Journal Title: Bioresource technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.