LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing Class I heat shock protein GroESL.

Photo by cdc from unsplash

Lignocellulosic biomass is the most abundant and renewable substrate for biological fermentation, but the inhibitors present in the lignocellulosic hydrolysates could severely inhibit the cell growth and productivity of industrial… Click to show full abstract

Lignocellulosic biomass is the most abundant and renewable substrate for biological fermentation, but the inhibitors present in the lignocellulosic hydrolysates could severely inhibit the cell growth and productivity of industrial strains. This study confirmed that overexpressing of native groESL in Clostridium tyrobutyricum could significantly improve its tolerance to lignocellulosic hydrolysate-derived inhibitors, especially for phenolic compounds. Consequently, ATCC 25755/groESL showed a better performance in butyric acid fermentation with hydrolysates of corn cob, corn straw, rice straw, wheat straw, soybean hull and soybean straw, respectively. When corn straw and rice straw hydrolysates, which showed strong toxicity to C. tyrobutyricum, were used as the substrates, 29.6 g/L and 30.1 g/L butyric acid were obtained in batch fermentation, increased by 26.5% and 19.4% as compared with the wild-type strain, respectively. And more importantly, the butyric acid productivity reached 0.31 g/L·h (vs. 0.20-0.21 g/L·h for the wild-type strain) due to the shortened lag phase.

Keywords: clostridium tyrobutyricum; groesl; lignocellulosic biomass; butyric acid

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.