LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective separation of microalgae cells using inertial microfluidics.

Photo from archive.org

Microalgae represent the most promising new source of biomass for the world's growing demands. However, the biomass productivity and quality is significantly decreased by the presence of bacteria or other… Click to show full abstract

Microalgae represent the most promising new source of biomass for the world's growing demands. However, the biomass productivity and quality is significantly decreased by the presence of bacteria or other invading microalgae species in the cultures. We therefore report a low-cost spiral-microchannel that can effectively separate and purify Tetraselmis suecica (lipid-rich microalgae) cultures from Phaeodactylum tricornutum (invasive diatom). Fluorescent polystyrene-microbeads of 6 μm and 10 μm diameters were first used as surrogate particles to optimize the microchannel design by mimicking the microalgae cell behaviour. Using the optimum flowrate, up to 95% of the P. tricornutum cells were separated from the culture without affecting the cell viability. This study shows, for the first time, the potential of inertial microfluidics to sort microalgae species with minimal size difference. Additionally, this approach can also be applied as a pre-sorting technique for water quality analysis.

Keywords: microalgae; separation microalgae; selective separation; cells using; inertial microfluidics; microalgae cells

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.