LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential of hydrolyzed polyacrylamide biodegradation to final products through regulating its own nitrogen transformation in different dissolved oxygen systems.

Photo by prophet2018 from unsplash

Potential of hydrolyzed polyacrylamide (HPAM) biodegradation to final products was studied through regulating its own nitrogen transformation. Under the conditions of 2, 3 and 4 mg/L of DO, HPAM removal ratio… Click to show full abstract

Potential of hydrolyzed polyacrylamide (HPAM) biodegradation to final products was studied through regulating its own nitrogen transformation. Under the conditions of 2, 3 and 4 mg/L of DO, HPAM removal ratio reached 16.92%, 24.51% and 30.78% and the corresponding removal ratio reached 49.15%, 60.25% and 76.44% after anaerobic biodegradation. NO3--N concentration was 9.43, 14.10 and 17.99 mg/L in aerobic stages and the corresponding concentration was 0.17, 0.07 and 0.008 mg/L after anaerobic biodegradation. Oxygen as electron acceptors stimulated the activities of nitrification bacteria and other functional bacteria, thus further enhanced nitrification and HPAM biodegradation. NO3- (from HPAM oxidation) as electron acceptors stimulated the activities of nitrate-reducing, acetate-producing and methanogenic microorganisms and they could form a synergistic effect on denitrification and methanogenesis. Thermodynamic opportunity window revealed that NOx- could accelerate anaerobic HPAM bioconversion to methane. Aerobic and anaerobic growth-process equations of cells verified that the metabolism on HPAM was feasible.

Keywords: potential hydrolyzed; biodegradation; biodegradation final; final products; hpam; hydrolyzed polyacrylamide

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.