A full-scale wastewater treatment plant (WWTP) with three separate treatment processes was selected to investigate the effects of seasonality and treatment process on the community structures of ammonia-oxidizing archaea (AOA)… Click to show full abstract
A full-scale wastewater treatment plant (WWTP) with three separate treatment processes was selected to investigate the effects of seasonality and treatment process on the community structures of ammonia-oxidizing archaea (AOA) and bacteria (AOB). And then DNA-based stable isotope probing (DNA-SIP) was applied to explore the active ammonia oxidizers. The results of high-throughput sequencing indicated that treatment processes varied AOB communities rather than AOA communities. AOA slightly outnumbered AOB in most of the samples, whose abundance was significantly correlated with temperature. DNA-SIP results showed that the majority of AOB amoA gene was labeled by 13C-substrate, while just a small amount of AOA amoA gene was labeled. As revealed by high-throughput sequencing of heavy DNA, Nitrosomonadaceae-like AOB, Nitrosomonas sp. NP1, Nitrosomonas oligotropha and Nitrosomonas marina were the active AOB, and Nitrososphaera viennensis dominated the active AOA. The results indicated that AOB, not AOA, dominated active ammonia oxidation in the test WWTP.
               
Click one of the above tabs to view related content.