LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological minimization of excess sludge in a membrane bioreactor: Effect of plant configuration on sludge production, nutrient removal efficiency and membrane fouling tendency.

Photo from wikipedia

Excess sludge minimization was studied in a MBR with pre-denitrification scheme. Sludge minimization, nitrogen removal performance and membrane fouling tendency were investigated in two configurations, characterized by a different position… Click to show full abstract

Excess sludge minimization was studied in a MBR with pre-denitrification scheme. Sludge minimization, nitrogen removal performance and membrane fouling tendency were investigated in two configurations, characterized by a different position of the sludge retention reactor (SRR). In particular, the SRR was placed: i) in the return activated sludge line (Anaerobic Side-Stream Reactor - ASSR configuration) and ii) in the mainstream between the anoxic and aerobic reactor (Anaerobic Main-Stream Reactor - AMSR configuration). The achieved results demonstrated that the ASSR enabled a higher excess sludge reduction (74% vs 32%), while achieving lower biological nitrogen removal (BNR) (TN = 63% vs 78%) and membrane fouling tendency (FR = 2.1 · 1012 m-1 d-1vs 4.0 · 1011 m-1 d-1) than the AMSR. It was found that metabolism uncoupling, destruction of EPS and endogenous decay simultaneously occurred in the ASSR. Conversely, selective enrichment of bacteria population with low biomass yield was found the main mechanism affecting sludge minimization in the AMSR.

Keywords: minimization; excess sludge; membrane fouling; sludge; membrane; fouling tendency

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.