LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Paracoccus versutus KS293 adaptation to aerobic and anaerobic denitrification: Insights from nitrogen removal, functional gene abundance, and proteomic profiling analysis.

Photo by aleexcif from unsplash

A novel strain KS293 exhibiting excellent aerobic and anaerobic denitrification performance was isolated and identified as Paracoccus versutus KS293. Nitrate nitrogen and total organic carbon could be effectively removed by… Click to show full abstract

A novel strain KS293 exhibiting excellent aerobic and anaerobic denitrification performance was isolated and identified as Paracoccus versutus KS293. Nitrate nitrogen and total organic carbon could be effectively removed by P. versutus KS293 without nitrite accumulation, whilst 82% and 85% of total nitrogen was converted into gaseous products under aerobic and anaerobic conditions (P > .05), respectively. Based on the ratio of anaerobic to aerobic, relative abundance values were increased 1.41, 1.45, and 2.31 folds for nirS, nosZ, and narG, respectively. A comparison of the two-dimensional gel electrophoresis and principal component analysis showed significant differences in proteomic profiles between aerobic and anaerobic conditions. In total, 78 proteins that displayed fluctuations in relative expression were observed. 10 proteins including nitrate reductase, maintenance of cell membrane (TolA), and RNA polymerase-binding transcription factor (DksA) were differentially expressed. These findings demonstrated that P. versutus KS293 was effective for nitrogen removal under aerobic or anaerobic conditions.

Keywords: nitrogen; versutus ks293; ks293; anaerobic denitrification; aerobic anaerobic

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.