The aim of this work was to study cellulose degradation and whole genome sequence of Paenibacillus lautus BHU3 isolate. The 16S rRNA gene sequence analysis revealed genetic relatedness (99%) of… Click to show full abstract
The aim of this work was to study cellulose degradation and whole genome sequence of Paenibacillus lautus BHU3 isolate. The 16S rRNA gene sequence analysis revealed genetic relatedness (99%) of Iso 7 with Paenibacillus lautus, Iso 8 with Paenibacillus lactis, and Iso 9 with Bacillus amyloliquefaciens. Clear zone formation followed by CMCase and FPase assays exhibited cellulolytic potential in the order: P. lautus > P. lactis > B. amyloliquefaciens. The most potent isolate, Paenibacillus lautus strain BHU3 was subjected to whole genome analysis with reference to the genomic basis of cellulose degradation. Results showed that P. lautus strain BHU3 contains 6234 protein coding genes of which, 316 were associated with the carbohydrate metabolism. Further, genomic CAZymes analysis indicated that the P. lautus strain BHU3 comprising a range of glycoside hydrolase (GH) family genes (143), may play the vital role(s) in enhancing the cellulolytic attributes, and could be the useful tool for lignocellulosic biomass degradation and waste management.
               
Click one of the above tabs to view related content.