LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of hydraulic retention time on nitrogen removal and functional gene quantity/transcription in biochar packed reactors at 5 °C: A control-strategy study.

Photo by jontyson from unsplash

This study investigated the effect of hydraulic retention time (HRT = 8, 12, 16, and 24 h) on effluent dissolved organic nitrogen (DON), dissolved total nitrogen (DTN), and functional gene quantity/transcription in biochar… Click to show full abstract

This study investigated the effect of hydraulic retention time (HRT = 8, 12, 16, and 24 h) on effluent dissolved organic nitrogen (DON), dissolved total nitrogen (DTN), and functional gene quantity/transcription in biochar packed reactors over a 125-day operation at 5 °C. The lowest effluent DON concentration (0.21 ± 0.14 mg/L) and DTN concentration (10.74 ± 0.41 mg/L) were in R12h and R24h, respectively. Adequate HRT (>12 h) was a necessary parameter for poly-β-hydroxybutyrate (PHB) accumulation (PHB/MLSS: 0.1181-0.1522), but higher HRT was detrimental to adenosine triphosphate (ATP) accumulation from 62.77-66.31 µg/g SS (R8h) to 48.21-48.39 µg/g SS (R24h). Effluent DON had a negative correlation relation with ATP and the relative abundance of amoA (p = 0.02), and effluent DTN had a negative correlation relation with PHB (p < 0.01), the relative abundance of napA (p = 0.01), and the transcriptional quantity of nirS (p = 0.14) and nxrA (p = 0.03).

Keywords: hydraulic retention; effect hydraulic; retention time; quantity; gene quantity; functional gene

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.