LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes.

Photo from wikipedia

Hospital wastewater contains high concentrations of pharmaceuticals, which pose risks to receiving waters. In this study, a pilot plant consisting of six moving bed biofilm reactors (MBBRs) in series (with… Click to show full abstract

Hospital wastewater contains high concentrations of pharmaceuticals, which pose risks to receiving waters. In this study, a pilot plant consisting of six moving bed biofilm reactors (MBBRs) in series (with the intention to integrate Biological Oxygen Demand (BOD) removal, nitrification and denitrification as well as prepolishing Chemical Oxygen Demand (COD) for ozonation) was built to integrate pharmaceutical removal and intermittent feeding of the latter reactors aimed for micropollutant removal. Based on the experimental resultss, nitrifying MBBRs achieved higher removal as compared to denitrifying MBBRs except for azithromycin, clarithromycin, diatrizoic acid, propranolol and trimethoprim. In the batch experiments, nitrifying MBBRs showed the ability to remove most of the analysed pharmaceuticals, with degradation rate constants ranging from 5.0 × 10-3 h-1 to 2.6 h-1. In general, the highest degradation rate constants were observed in the nitrifying MBBRs while the latter MBBRs showed lower degradation rate constant. However, when the degradation rate constants were normalised to the respective biomass, the intermittently fed reactors presented the highest specific activity. Out of the 22 compounds studied, 17 compounds were removed with more than 20%.

Keywords: degradation rate; removal; mbbrs; moving bed; hospital wastewater; bed biofilm

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.