LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors.

Photo from wikipedia

The effects of pore sizes on the in-situ utilization of synthesis gas (syngas, H2 and CO) mixed culture fermentation (MCF) in the hollow-fiber membrane biofilm reactor (HfMBR) are not clear.… Click to show full abstract

The effects of pore sizes on the in-situ utilization of synthesis gas (syngas, H2 and CO) mixed culture fermentation (MCF) in the hollow-fiber membrane biofilm reactor (HfMBR) are not clear. Thus, the ultrafiltration (R1) and microfiltration (R2) HfMBRs were constructed. Syngas was totally consumed within the formed biofilm in R1; contrarily, it accumulated notably in R2. In the batch mode of R1 and R2, volatile fatty acids (VFAs) of acetate, butyrate and caproate were the main metabolites, but the production rate of total VFA in R1 (61.9 mmol-C/(L·d)) was higher than that of R2 (27.6 mmol-C/(L·d)). In the continuous mode, the R1 performance was much better than that of R2, and the biofilm in R2 was even washed out. Furthermore, Clostridium (30.0%) was the main genus in the enriched biofilm of R1, which converted syngas to VFAs. Thus, the ultrafiltration membrane shall be the suitable candidate for syngas MCF.

Keywords: fiber membrane; synthesis gas; culture fermentation; hollow fiber; mixed culture; membrane

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.