LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel strategy to enhance biohydrogen production using graphene oxide treated thermostable crude cellulase and sugarcane bagasse hydrolyzate under co-culture system.

Photo by louishansel from unsplash

Graphene oxide (GO) treated thermostable crude cellulase has been obtained via fungal co-cultivation of strain Cladosporium cladosporioides NS2 and Emericella variecolor NS3 using mix substrate of orange peel and rice… Click to show full abstract

Graphene oxide (GO) treated thermostable crude cellulase has been obtained via fungal co-cultivation of strain Cladosporium cladosporioides NS2 and Emericella variecolor NS3 using mix substrate of orange peel and rice straw under solid state fermentation (SSF). Enzyme activity of 60 IU/gds FP, 300 IU/gds EG and 400 IU/gds BGL are recorded in the presence of 1.0% GO in 96 h. This crude enzyme showed 50 °C as optimum incubation temperature, thermally stable at 55 °C for 600 min and stability in the pH range 4.5-8.0. Further, 70.04 g/L of sugar hydrolyzate is obtained from enzymatic conversion of 3.0% alkali pre-treated baggase using GO treated crude cellulase. Finally, 2870 ml/L cumulative biohydrogen production having bacterial biomass ∼2.2 g/L and the complimentary initial pH 7.0 is recorded from sugar hydrolyzate via dark fermentation using co-culture of Clostridium pasteurianum (MTCC116) and a newly isolated Bacillus subtilis PF_1.

Keywords: graphene oxide; crude cellulase; hydrolyzate; oxide treated; crude

Journal Title: Bioresource technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.