In this study, microalgal biomass waste (Chlorella regularis) was treated while simultaneously producing bioelectricity in a microbial fuel cell (MFC). Algal biomass was the sole electron donor and was enriched… Click to show full abstract
In this study, microalgal biomass waste (Chlorella regularis) was treated while simultaneously producing bioelectricity in a microbial fuel cell (MFC). Algal biomass was the sole electron donor and was enriched with easily biodegradable proteins (46%) and carbohydrates (22%). The generated power density was 0.86 W/m2 and the columbic efficiency reached ∼61.5%.The power generation could be further increased to 1.07 W/m2 by using a biomass waste concentration enhancement strategy with maximum chemical oxygen demand (COD) removal of ∼65.2%. Via direct comparison, the power generation and COD removal capability of the algal-fed MFC was close to that of the commercial acetate-fed MFC. The algae-fed MFC presented superior electrochemical characteristics that were attributed to the complicated composition of the biomass anolyte. It possessed a multiple anode respiring bacterial group and diverse microbial community. Hence, this study provides a new strategy for the utilization of microalgal biomass as a bioresource.
               
Click one of the above tabs to view related content.