Hierarchical porous biochar derived from corn straw containing ternary needle-like iron-manganese-sulphur composites (Fe-Mn-S@HCS) are fabricated, and their physicochemical characteristics and performance for Pb removal were examined in detail. Introduction of… Click to show full abstract
Hierarchical porous biochar derived from corn straw containing ternary needle-like iron-manganese-sulphur composites (Fe-Mn-S@HCS) are fabricated, and their physicochemical characteristics and performance for Pb removal were examined in detail. Introduction of Mn (transition metal) into Fe-biochar composites can effectively alter the chemical state of Fe; simultaneous doping with S can enhance cation exchange for Pb removal. High uptake of Pb by Fe-Mn-S@HCS in a short time period was observed with the adsorption capacity of 181.5 mg g-1 and the pseudo-second-order rate constant of 0.075 g mg-1 h-1. Complexation, reduction, and precipitation were found to be involved in the Pb removal by Fe-Mn-S@HCS based on the results of HRTEM, XPS, and XRD analyses. This study demonstrated the feasibility of Fe-Mn-S biochar composites for high-efficiency Pb removal from aqueous solution.
               
Click one of the above tabs to view related content.