LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: An integrated bioremediation and biorefinery approach.

Photo by aleexcif from unsplash

The present study investigated the feasibility of domestic sewage wastewater (DSW) as an alternate to fresh-water microalgae growth media towards high-value bioenergy feedstock production. Eight native microalgal strains were screened… Click to show full abstract

The present study investigated the feasibility of domestic sewage wastewater (DSW) as an alternate to fresh-water microalgae growth media towards high-value bioenergy feedstock production. Eight native microalgal strains were screened from DSW and the effect of raw DSW (RDSW), and autoclaved DSW (ADSW) on growth and bioremediation potential were evaluated and compared with control BG11 medium. The study confirmed RDSW as a potential growth medium while Monoraphidium sp. KMC4 showed superior biomass (1.47 ± 0.08 g L-1) and lipid yield (436.01 ± 0.06 mg L-1). The corresponding values for bioremediation of ammonia, nitrate, phosphate, as well as COD remained within 88-100%. CHNS, biochemical, TGA, FTIR, FAME analysis of KMC4 confirmed it's potential as bioenergy feedstock. Additionally, a comprehensive characterization of lipid-extracted microalgae biomass (LEMB) was carried out which suggested that LEMB can be used as a growth promoter as well as feedstock for biogas, bioethanol, and bio-oil production.

Keywords: biomass; bioenergy feedstock; bioremediation; bioenergy; comprehensive characterization

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.