LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermostable xylanases from thermophilic fungi and bacteria: Current perspective.

Photo by brenkee from unsplash

Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500… Click to show full abstract

Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500 Million. The genome wide analysis of thermophilic fungi clearly shows the presence of elaborate genetic information coding for multiple xylanases primarily coding for GH10, GH11 in addition to GH7 and GH30 xylanases. The transcriptomics and proteome profiling has given insight into the differential expression of these xylanases in some of the thermophilic fungi. Bioprospecting has resulted in identification of novel thermophilic xylanases that have been endorsed by the industrial houses for heterologous over- expression and formulations. The future use of xylanases is expected to increase exponentially for their role in biorefineries. The discovery of new and improvement of existing xylanases using molecular tools such as directed evolution is expected to be the mainstay to meet increasing demand of thermostable xylanases.

Keywords: xylanases thermophilic; thermophilic fungi; fungi bacteria; thermostable xylanases; bacteria current; current perspective

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.