LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

System performance and microbial community in ethanol-fed anaerobic reactors acclimated with different organic carbon to sulfate ratios.

Photo from wikipedia

Sulfate influences the organics removal and methanogenic performance during anaerobic wastewater treatment. System performance, microbial community and metabolic pathways in ethanol-fed anaerobic reactors were investigated under different COD/SO42- ratios (2,… Click to show full abstract

Sulfate influences the organics removal and methanogenic performance during anaerobic wastewater treatment. System performance, microbial community and metabolic pathways in ethanol-fed anaerobic reactors were investigated under different COD/SO42- ratios (2, 1 and 0.67) and control without sulfate addition. The sulfate removal percentages declined (99%, 60% and 49%) with decreasing COD/SO42- ratios, and methanogenesis was completely inhibited. Acetate accumulated to 903-734 mg/L, though propionate was constantly lower than 30 mg/L. Without sulfate, acetate and propionate did not accumulate, despite the extended time for propionate degradation. Incomplete oxidizing sulfate reducing bacteria (Desulfobulbus and Desulfomicrobium) and hydrolysis-acidification genera (Treponema and Bacteroidales) predominated but could not degrade acetate. Desulfobulbus was the key genus for propionate degradation through the pyruvate & propanoate metabolism pathway. Pseudomonas and Desulfobulbus, possessing genes encoding Type IV pili and cytochrome c6 OmcF, respectively, potentially participated in the direct interspecies electron transfer in sulfate-rich conditions.

Keywords: sulfate; microbial community; ethanol fed; performance; system performance; performance microbial

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.