LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling growth and fermentation inhibition during bioethanol production using component profiles obtained by performing comprehensive targeted and non-targeted analyses.

Photo from wikipedia

Corn cob and corn stover hydrolysates are forms of lignocellulosic biomass that can be used in second generation bioethanol production and biorefinery processes. Growth and fermentation inhibitors generated during physicochemical… Click to show full abstract

Corn cob and corn stover hydrolysates are forms of lignocellulosic biomass that can be used in second generation bioethanol production and biorefinery processes. Growth and fermentation inhibitors generated during physicochemical and enzymatic hydrolysis decrease ethanol and biomaterial production during the subsequent biological processes. Here, estimates of growth and fermentation inhibition during bioethanol fermentation were made using component profiles of corn cobs and corn stover at different degrees of hydrolysis. The component profiles were acquired by non-targeted gas chromatography mass spectrometry and targeted high-performance liquid chromatography. Correlations between the comprehensive analysis results and yeast growth and ethanol production were modeled very accurately by partial-least-squares regression analysis. Acetate, apocynin, butyrovanillone, furfural, furyl hydroxymethyl ketone, m-methoxyacetophenone, palmitic acid, syringaldehyde, and xylose, were compounds with very variable importance in projection values and had negative correlation coefficients in the model. In fact, methoxyacetophenone, apocynin, and syringaldehyde inhibited fermentation more than furfural in equivalent concentration.

Keywords: growth fermentation; production; bioethanol; component profiles; growth

Journal Title: Bioresource technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.